Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Ischemia–Reperfusion Injury in Rat Ovary

نویسندگان

  • Ovario de Rata
  • Ümit Görkem
  • Cihan Togrul
  • Izzet Sahin
  • Bugra Coskun
  • Mustafa Ozat
  • Tayfun Güngör
  • Engin Deveci
چکیده

The aim of this study was to investigate the effects of caffeic acid phenethyl ester (CAPE) as a prophylactic agent on ischemia/reperfusion (I/R) injury in the rat ovary. A total of 28 Wistar rats were divided into 4 equal groups: (I) sham, (II) ischemia, (III) ischemia + reperfusion, and (IV) IR + CAPE. In groups I and II, ovary torsion was not performed and no drug was administered. In group III, 1 hour of ischemia and 2 hours of reperfusion were performed and no drug was given. Ovarian tissue concentrations of malondialdehyde were significantly higher in the torsion and detorsion groups compared with the sham and Cape groups (P<0.005). The detorsion group showed preantral ovarian follicles and luteal folicules around the blood vessels and positive expression of CD34. In the CAPE group the stromal vascular endothelium with weak expression of CD34 was detected in small areas, and the ovarian follicles and the corpus luteum showed negative expression of CD34. In the study, Biochemical and histopathological results of CAPE treatment was considered to torsion-detorsioned the model showed a protective effect against tissue damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat

Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...

متن کامل

Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat

Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...

متن کامل

Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative stress in human endothelial cells.

Caffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many biological activities, has been shown to be protective against ischemia-reperfusion injury. We have synthesized six new catechol ring-fluorinated CAPE derivatives and evaluated their cytotoxic and cytoprotective effects against menadione-induced cytotoxicity in human umbilical vein endothelial cells. These results pr...

متن کامل

Caffeic acid phenethyl amide ameliorates ischemia/reperfusion injury and cardiac dysfunction in streptozotocin-induced diabetic rats

BACKGROUND Caffeic acid phenethyl ester (CAPE) has been shown to protect the heart against ischemia/reperfusion (I/R) injury by various mechanisms including its antioxidant effect. In this study, we evaluated the protective effects of a CAPE analog with more structural stability in plasma, caffeic acid phenethyl amide (CAPA), on I/R injury in streptozotocin (STZ)-induced type 1 diabetic rats. ...

متن کامل

Cardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro

Caffeic acid phenethyl ester (CAPE) could ameliorate myocardial ischemia/reperfusion injury (MIRI) by various mechanisms, but there hadn't been any reports on that CAPE could regulate silent information regulator 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) to exert cardioprotective effect. The present study aimed to investigate the cardioprotective potential of caffeic acid o-nitro p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017